Heterogeneous architecture of vertebrate kinetochores revealed by three-dimensional superresolution fluorescence microscopy
نویسندگان
چکیده
The kinetochore is often depicted as having a disk-like architecture in which the outer layer of proteins, which engage microtubules and control checkpoint signaling, are built on a static inner layer directly linked to CENP-A chromatin. Here, applying three-dimensional (3D) structural illumination microscopy (SIM) and stochastic optical reconstruction microscopy (STORM) to Xenopus egg extracts and tissue culture cells, we report various distribution patterns of inner and outer kinetochore proteins. In egg extracts, a configuration in which outer kinetochore proteins surround the periphery of CENP-A chromatin is common, forming an ∼200-nm ring-like organization that may engage a bundle of microtubule ends. Similar rings are observed in Xenopus tissue culture cells at a lower frequency but are enriched in conditions in which the spindle is disorganized. Although rings are rare in human cells, the distribution of both inner and outer kinetochore proteins elongates in the absence of microtubule attachment in a manner dependent on Aurora B. We propose a model in which the 3D organization of both the outer and inner kinetochore regions respond to the progression from lateral to end-on microtubule attachments by coalescing into a tight disk from less uniform distributions early in prometaphase.
منابع مشابه
Quantitative Superresolution Microscopy Reveals Differences in Nuclear DNA Organization of Multiple Myeloma and Monoclonal Gammopathy of Undetermined Significance
The mammalian nucleus has a distinct substructure that cannot be visualized directly by conventional microscopy. In this study, the organization of the DNA within the nucleus of multiple myeloma (MM) cells, their precursor cells (monoclonal gammopathy of undetermined significance; MGUS) and control lymphocytes of the representative patients is visualized and quantified by superresolution micros...
متن کاملMolecular orientation affects localization accuracy in superresolution far-field fluorescence microscopy.
We investigate the cooperative effect of molecular tilt and defocus on fluorophore localization by centroid calculation in far-field superresolution microscopy based on stochastic single molecule switching. If tilt angle and defocus are unknown, the localization contains systematic errors up to about ±125 nm. When imaging rotation-impaired fluorophores of unknown random orientation, the average...
متن کاملSuperresolution microscopy for microbiology.
This review provides a practical introduction to superresolution microscopy from the perspective of microbiological research. Because of the small sizes of bacterial cells, superresolution methods are particularly powerful and suitable for revealing details of cellular structures that are not resolvable under conventional fluorescence light microscopy. Here we describe the methodological concep...
متن کاملProtein Architecture of the Human Kinetochore Microtubule Attachment Site
Chromosome segregation requires assembly of kinetochores on centromeric chromatin to mediate interactions with spindle microtubules and control cell-cycle progression. To elucidate the protein architecture of human kinetochores, we developed a two-color fluorescence light microscopy method that measures average label separation, Delta, at <5 nm accuracy. Delta analysis of 16 proteins representi...
متن کاملPractical considerations for single molecule localization microscopy
This is an especially exciting era in biological optical microscopy, a series of new and accessible far-field ‘superresolution’ fluorescence techniques are changing the way we view cells. These techniques surpass the traditional resolution limit dictated by the diffraction of light, approaching levels previously occupied solely by electron microscopy. Herein the authors review and discuss some ...
متن کامل